by a **450-W** Hanovia lamp using a uranium glass filter under nitrogen. The reaction was followed by TLC and **GC** using column a; no starting material was detected after **2** h of irradiation. The solvent was removed at reduced pressure to give the photoadducts in **94%** yield. The two isomers were separated by preparative GC, oven temperature **210** OC, to give **46** mg of **12** and **46** mg of **13. 12: IR (CHCl₃) 1690 cm⁻¹; ¹H NMR (60 MHz, C₆D₆) δ 0.916** (3 H, d, $J = 6$ Hz); HRMS calcd for $C_{12}H_{18}O$ 178.1358, found 178.1369. Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.59; H, 10.24. 13: IR (CHCl₃) 1690 cm⁻¹; ¹H NMR (60 MHz, C_6D_6) δ 0.87 (3 H, d, J = 6 Hz); **HRMS** calcd for $C_{12}H_{18}O$ 178.1358, found **178.1364.** Anal. Calcd for C12H180: C, **80.85;** H, **10.18.** Found: C, 80.78; H, 9.96.

Irradiation of Enone Olefin **3.** A solution of 3 **(0.185** g, **0.9** mmol) in **150** mL of cyclohexane was irradiated **as** described for **1** to give a mixture of two photoadducta in a **1:l** ratio according to GC analysis on column a, in 90% yield: IR (CHCl₃) 1680 cm⁻¹ ¹H NMR (60 MHz, CDCl₃) δ 0.81 (6 H, d, J = 6 Hz); HRMS calcd for C₁₄H₂₂O 206.1670, found 206.1676.

Irradiation of Enone Olefin **5.** A solution of **5** (0.05 g, **0.3** lamp via a uranium glass filter for 3 h under nitrogen. The solvent was removed under reduced pressure, and the oil was purified by preparative GC to give, in **92%** yield, the photoadducts **17** and **18:** IR (CHCl₃) **1690** cm⁻¹; HRMS calcd for C₁₁H₁₄D₂O 166.1326, found **166.1324.**

Irradiation of Enone Olefin **6.** Enone **6 (0.032 g, 1.8** mmol) was irradiated for **3** h **as** described for **5.** The reaction was followed by GC using column a; the photoadducts were isolated in **95%** yield. Two products were identified, **19** and **20,** in a **351** ratio, respectively, by GC analysis on column a. 19: IR (CHCl₃) 1680 calcd for C12H180 **178.1357,** found **178.1347.** Anal. Calcd for C12H180: C, **80.85;** H, **10.18.** Found: C, **80.77;** H, **10.11.** m-'; 'H **NMR** (60 MHz, CDCl3) **6 1.07 (3** H, d, J ⁼**6 I&);** HRMS

Irradiation of Enone Olefin 7. Enone 7 (0.045 g, 0.25 mmol) was irradiated for **3** h **as** described for **5.** The reaction **was** followed by GC using column a; photoadducts **19** and **20** were formed in a **5.81** ratio and were isolated in **95%** yield. Spectral data of the mixture: IR (CHCl₃) 1680 cm^{-1} ; ¹H NMR $(60 \text{ MHz}, \text{CDCl}_3) \delta_{19}$ **1.07 (3** H, d, J ⁼**6** Hz), **Bm 0.93 (3** H, d, J ⁼**6** Hz). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.80; H, 10.13.

Irradiation of Enone Olefin 8. Enone 8 (0.029 g, 0.14 mmol) was irradiated for **4** h **as** described for **5.** The reaction **was** followed by GC using column b; photoadducts **21** and **22** were formed in a **3.81** ratio and were isolated in 90% yield. Spectral data of the mixture: IR (CHCl,) **1680** cm-'; 'H *NMR* (60 **MHz,** CDClJ *8* 0.90 (6 H, d, J ⁼**6** Hz), **0.80 (6** H, d, J ⁼**6** Hz). Anal. Calcd for C14H22O: C, **81.50;** H, **10.75.** Found: C, **81.51;** H, **10.99.**

Irradiation of Enone Olefin **9.** Enone **9 (0.021** g, **0.1** mmol) was irradiated for **4** h as described for **5.** Photoadducta **21** and **22** were formed in **1.4:l** ratio, according to GC using column b, and isolated in **90%** yield.

Irradiation of Enone Olefin **10.** Enone **10 (0.142** g, **0.86** mmol) was irradiated as described for 1, and a single photoadduct, **23, was isolated in 95% yield: IR (CHCl₃) 1680 cm⁻¹; ¹H NMR 1.93 (2** H, m), **1.8-1.7 (2** H, m), **1.64 (1** H, m), **1.59-1.5 (2** H, m), 1.4-1.3 (5 H, m) 1.14 (1 H, m); HRMS calcd for C₁₁H₁₆O 164.1201, found **164.1205. (400** MHZ, C&) **6 2.43 (1** H, m), **2.34 (1** H, m), **2.31 (1** H, m),

Irradiation of Enone Olefin **11.** Enone **11 (0.023** g, **0.14** mmol) was irradiated as described for **5.** The photoadduct was isolated in 92% yield: IR (CHCl₃) 1680 cm⁻¹; ²H NMR (400 MHz, for CllH14D20 **166.1327,** found **166.1310.** C_6D_6) δ 2.43 (1 \dot{D} , s), 1.57 $(^2/3D)$, s), 1.32 $(^1/3D)$, s); HRMS calcd

Supplementary Material Available: 'H NMR spectra for relevant compounds **(18** pages). Ordering information is given on any current masthead page.

Notes

Preparation of Fullerenee with a Simple Benchtop Reactor

A. **S.** Koch, K. C. Khemani, and F. Wudl*

Institute for Polymers and Organic Solids, Departments of Physics and Chemistry, University of California, Santa Barbara, California *93106*

Receioed April *15,* 1991

Though the de novo synthesis of buckminsterfullerene, C_{60} , remains an interesting challenge to the organic chemist,¹ the fullerenes are currently prepared by electric-arc graphite decomposition^{2,3} in machines that are the domain of chemical physicists, physicists, materials scientists, and electrical engineers. Basically, an arc between two graphite rods is sparked at **f30-150 A** in a He **(100** Torr) atmosphere in a commercial metal evaporator and the soot resulting **from** the decomposition is **collected, extracted** with **toluene,** and separated by chromatography.' **A** rather complicated machine, for more efficient preparations, in which two **1/4-in.** rods are held horizontally and kept in arcing contact manually by a screw mechanism, has recently been de $scribed.⁵$ More recently, mixtures of fullerenes ("soot extract") were made commercially available,⁶ albeit at relatively high price.

In this publication, we describe a fullerene benchtop reactor that is easily assembled from commercial preparative chemistry glassware and a minimum of machine shop work (total cost, parts and labor **\$700).** The apparatus is shown schematically below and in full detail in

⁽¹⁾ Chapman, *0.* Privata communication, **1987.** Pascal, R. Private communication, 1990.

⁽²⁾ Kritschmer, W.; Lamb, L. D.; Foetiropouloe, K.; Huffman, D. R. *Nature* **1990,347,3M.**

⁽³⁾ Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M. M.; O'Brien, S. C.; Pan, C.; Xiao, Z.; Billupa, **W. E.;** Ciufolini, **M.** A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. E. J. Phys. *Chem.* **1990,94,8634.**

⁽⁴⁾ Ajie, H.; Alvarez, M. M.; **Anz,** S. J.; Beck, R. D.; Diederich, **F.;** Fostiropouloa, K.; Huffman, D. R.; **Kritschmer,** W.; Rubin, **Y.;** Schriver, K. E.; Senaharma, D.; Whetten, R. L. J. *Phys. Chem.* **1990, 94,** *8830.* K. E.; Seismarma, D.; Wenten, K. E. o. Friys. Chem. 1990, S., 6030.
Taylor, R.; Hare, J. P.; Metten, A. K.; Kroto, H. W. J. Chem. Soc., Chem. Commun. 1990, 1423. Tycko, R.; Haddon, R. C.; Dabbagh, G.; Glarum, S. H.; Dougla

Hollander, F. J. Science 1991, 252, 312.

(5) Haufler, R. E.; Chai, Y.; Chibante, L. P. F.; Conceicao, J.; Jin, C.;

Wang, L. S.; Maruyama, S.; Smalley, R. E. Mat. Res. Soc. Symp. Proc.

^{1991,} in press.
(6) Materials & Electrochemical Research Corp. (MER Corp.), 7960
So. Kolb Rd., Tucson Az 85706; \$250/100 mg, \$1200.00/1000 mg. Texas
Fullerene Corp.; \$100/10 g of crude soot. We thank Prof. R. Smalley for this information.

The key features are that (a) the graphite is gravity-fed⁷ and (b) the soot is all neatly contained^{8,9} in a familiar reaction vessel. With this apparatus we were able to prepare 0.5 g of soot extract/day (\sim 0.25 g of C₆₀/day), prepare 0.5 g or soot extract/day $(\infty.25$ g or $C_{60}/day)$, using 3-mm $(1/_{8}$ -in.) diameter "consumable" rods. The bottom 12-mm $(1/_{2}$ -in.) diameter graphite rod is essentially not degraded. It takes approximately 10 min to "burn" \sim 150-mm (6 in.) of graphite when the current is 55 A and \sim 20 min for the apparatus to cool down. At higher currents (120-150 A), 6 in. of graphite are consumed in only 1 min; however, the yield decreases to 1-2%. Eight runs can be accommodated in 1 day, producing \sim 6-12 g of soot. Though the yield is only ca. $\frac{1}{2}$ that obtained by us with a conventional evaporator, we believe the convenience and simplicity of the apparatus should make it possible for any synthetic chemist to be able to produce useful quantities of C_{60} and C_{70} .

Experimental Section

Reagents. Unless otherwise indicated, all materials were obtained from commercial suppliere and used without purification. Latex gloves and Dust-Mist masks (3M No. 8710) were worn whenever handling the soot or extract.⁹ Fisher ultra-spec 2000 gray spectacles were worn while the graphite rode were burning.1° UV-vis spectra were obtained using a Perkin-Elmer Lambda *5* spectrophotometer. Infrared spectra were obtained **as** KBr mull pellets using a Perkin-Elmer 1330 spectrophotometer, and NMR spectra were obtained on a GN **500** spectrometer. Power supply was a **Sears** Craftsman 2301140 AC/DC Infinite Amp Arc Welder. The original cables were modified so they could be bolted onto

(9) The combination of photophyeid and electrochemical properties (Allemand, P.-M.; Koch, A.; Wudl, **F.;** Rubin, **Y.;** Diederich, **F.;** Alvarez, M. M.; Anz, **S.** J.; Whetten, R. L. J. *Am. Chem.* SOC. **1991,213,1060)** of $C_{\epsilon 0}$ should be of some health-related concern, see: Foote, C. S.; Diederich, **F.;** Whetten, **R.** L.; Wudl, **F.** *Chem.* **Eng.** *News* **1990,68,2.** Hence the **use** of masks and gloves in our Experimental Section.

even with protective eye glasses; however, after ~ 30 s of soot generation, the walls of the vessel are so dark that no light escapes and only an orange-to-white glow can be observed just below the cooling baffles. The noticeable sudden pressure changes.

Figure 1. Detailed drawing of the fullerene benchtop reaction. (a) Top view of the aluminum lid, P.R.V. = pressure relief valve. The lid is $6^{1}/_{2}$ in. in diameter and $^{5}/_{9}$ in. thick aluminum. A 314-in. bevel was turned to seat the lid on the reactor, followed by a 6-in. diameter groove for the O-ring **(see** side view, Figure lb). (b) Side view of the apparatus where moat of the componenta on the lid were left off for clarity. The $\frac{1}{4}$ -in. diameter Cu electrodes were silver-soldered to the ceramaseals, which were, in turn, silver-soldered to brass pipe threads. As a precaution, one of the $\frac{1}{4}$ -in. Cu electrodes and the $\frac{1}{2}$ -in. graphite rod were lined with a Pyrex sleeve.

the electrodes. To avoid any strain on the electrode, the cablea were clamped to the top of the reactor. The $\frac{1}{8}$ -in. high-uniformity graphite rods were obtained from POCO Graphite Inc., 1601 **S.** State St., Decatur, TX 76234 (catalog no. S55P0H21). The ¹/₂-in.
Specpure graphite rods were obtained from Johnson Matthey Chemicals Limited, 74 Hatton Garden, London, E.C.1. England (catalog no. JMC2103).

⁽⁷⁾ The UCLA modified evaporator used **the** idea of gravity graphite feed Whetten, R. L.; Alvarez, M. M.; Anz, **5.** J.; Schriver, K. E.; Beck, R. D.; Diederich, **F. N.;** Rubin, **Y.;** Ettl, R.; **Foote,** C. S.; Darmanyan, A. **P.;** Aborgaat, **J.** W. Mat. *Res. SOC. hoc.* **1991,** *206,* in **prese,** private communication, **1990.**

⁽⁸⁾ C_{60} is a very efficient sensitizer for the conversion of triplet to excited-state singlet oxygen **aa** determined by: Aborgast J. W.; Darma-nyan, A. P.; Foote, C. S.; Diederich, **F. N.;** Whetten, R. L.; Rubin, *Y.* J. *Phys. Chem.* **1991,95,11.**

Formation of Fullerenes. One end of an 8-in. long, $\frac{1}{s}$ -in. diameter, graphite rod was sharpened with a pencil sharpener, then weighed $(\sim 2.8 \text{ g})$. The flat end of the $\frac{1}{s}$ -in. rod was secured to **part** A **(see diagram** above) and placed through the copper guide B *(see* diagram above), *80* that the point was resting in an indent carved into the $\frac{1}{2}$ -in. graphite rod. The apparatus was connected to an ultrapure He cylinder and to a two-neck 5-L round-bottom flask (ballast). The second neck of the ballast was connected to an oil vacuum pump via a 2.5-cm outside diameter coarse frit to prevent soot from contaminating the oil pump. The apparatus was purged five times by He pump-filling cycles. The setup was then brought to 100 Torr He. The reactor was placed in a cold water bath (5-gal bucket), the power supply was set to 130 A, AC, and turned on. After the arc between graphite **rods started,** the power was reduced to a setting of "70" (ammeter reading of 55 A). In about 10 min. the $\frac{1}{s}$ -in. rod was consumed (~6 in.) to the point that it could no longer make contact with the $\frac{1}{2}$ -in. rod, and the power was shut off. The system was brought up to atmospheric pressure with He and allowed to cool for 20 min before moving the reactor to a hood and brushing the soot from the electrodes and the heat shield (baffle) **into** the kettle and extracted with 700 mL of benzene and the extract filtered using a 150-mL ASTM 10-15 M fritted-glass funnel. Sometimes *"slag"* forms on the $\frac{1}{2}$ -in. bottom graphite rod; it should be removed before the next run, otherwise the $\frac{1}{8}$ -in. rod will not burn uniformly or it will be difficult to **start** an arc. Another '/s-in. rod was put in place, and the process was repeated. This was done eight times at which point the kettle was moved into a hood. The solvent was removed in vacuo, giving 410 mg of extract from a total of 5.3 g of "burned" carbon (yield 7.7%). Pure C₆₀, 220 mg $(53.7\%$ by weight from extract), and C_{70} , 50 mg (\sim 11% by weight from extract, still containing some C_{60}), were obtained by passing the extract through a column of Brockmann neutral activity grade I, 80-200-mesh Alumina, using 5 and 20% toluene in hexanes', respectively. When rods were burnt at 6 in./min with 130-A current, 12.5 g of graphite produced only 380 mg of extract (yield \sim 3%).

Summary and Conclusions

We described an apparatus for the facile preparation of buckminsterfullerenes. The reactor can be assembled mostly from commercial parts and fits in a standard preparative chemist's fume hood. The soot generated from graphite decomposition is easily and safely recovered. The yield of C_{60} is in the range of 3-4% based on graphite rod consumed.

Acknowledgment. We thank the National Science Foundation for support through Grants DMR-88-20933 and CHES9-08323. We are indebted to Rudi Stuber and his colleagues for help with the design and execution of the fullerene benchtop reactor.

Supplementary Material Available: Reproduction of photographs of the reactor (3 pages). Ordering information is given on any current masthead page.

Stereoselective Synthesis of Theonelladins A-Dt

A. **V.** Rama Rao,* G. Ravindra Reddy, and **B.** Venkateswara Rao

Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received December 3, 1990

Introduction

In recent years several pyridine-derived alkaloids such **as** navenones,' pu10'upone,2 halitoxins? and niphatynes,'

IICT Communication No. **2728.**

N HCl, MeOH; (c) Swern oxidation; (d) NH₃ or MeNH₂, MeOH, NaBH₄; (e) Pd-C/H₂, EtOH.

have been isolated from marine organisms. Theonelladins $A-D^5$ (1-4) belonging to the same group of alkaloids have been isolated from the Okinawan marine sponge Theonella swinhoei. The antileukemic Theonelladins A-D **also** exhibited potent antineoplastic activity against marine lymphomas L1210 and showed powerful $Ca²⁺$ -releasing activity from sarcoplasmic reticulum. These compounds were found to be **20** times more potent than caffeine, a wellknown Ca^{2+} inducer. Here we describe the first total synthesis of these highly active compounds. This process will make it possible to obtain the title compounds in large quantities for biological screening.

Discussion of Results

The general strategy (Scheme I) utilized in the present synthesis involved a common approach for construction of the required carbon skeleton. Accordingly, the Wittig reaction has been utilized to our advantage, both for the chain elaboration as well **as** for the stereoselective introduction of the required C-9 double bond. The commercially available 3-y-pyridinepropanol was chosen **as** the starting material for simple and straightforward synthesis of **1-4.**

Swern oxidation⁶ of 3- γ -pyridinepropanol in CH₂Cl₂ gave the aldehyde **5** in 78% yield. Construction of the required carbon skeleton was achieved by Wittig olefination,⁷ where the aldehyde **5** in THF was reacted with phosphonium *sal@* 6 in the presence of *n*-butyllithium at -40 °C to afford compound **7,** thereby stereoselectively introducing the cis double bond. The configuration of the double bond was assigned by spectral studies $(^1H$ and ^{13}C NMR). The coupling constant of the olefinic protons was found to be 10.6 Hz, corresponding to the literature value.⁹ The ¹³C

-
- **1978,43,3916. (4)** Quinoa, E.; Crews, P. *Tetrahedron Lett.* **1987,28, 2487.** *(6)* Kobayaehi, J.; Murayama, T.; Ohizumi, Y.; Sasaki, T.; Ohta, T.;
	-
- **Nozoe,** S. *Tetrahedron Lett* **1989,30, 4833.**
- (6) (a) Omura, K.; Swern, D. Tetrahedron 1978, 30, 1651. (b) Mancuso, A. J.; Brownfain, D. S.; Swern, D. J. Org. Chem. 1979, 44, 4148.
(7) Yamagiwa, Y.; Ohashi, K.; Sakamoto, Y.; Hirakawa, S.; Kamikawa,
- **T.** *TetrahedTon* **.1989,43,3\$87;**
- **1979,102, 185. (8) Novak, L.;** Toth, M; Balla, J.; Szantay, C. *Acta Chim. Sci. Hung.*

⁽¹⁾ Sleeper, H. L.; Fenical, W. J. A*m. Chem. Soc* 1977, 99, 2367.
(2) Coval, S. J.; Scheuer, P. J. J. Org. *Chem.* 1985, 50, 3025.
(3) Schmitz, F. J.; Hollenbeak, H. K.; Campbell, D. C. J. Org. *Chem.*